12.1 C
New York
Thursday, September 29, 2022

A cellular hierarchy in melanoma uncouples growth and metastasis


  • Rambow, F., Marine, J. C. & Goding, C. R. Melanoma plasticity and phenotypic range: therapeutic obstacles and alternatives. Genes Dev. 33, 1295–1318 (2019).

  • Arozarena, I. & Wellbrock, C. Phenotype plasticity as enabler of melanoma development and remedy resistance. Nat. Rev. Most cancers 19, 377–391 (2019).

  • Gulati, G. S. et al. Single-cell transcriptional range is a trademark of developmental potential. Science 367, 405–411 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rambow, F. et al. Towards minimal residual disease-directed remedy in melanoma. Cell 174, 843–855 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wouters, J. et al. Strong gene expression packages underlie recurrent cell states and phenotype switching in melanoma. Nat. Cell Biol. 22, 986–998 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Patton, E. E. et al. Melanoma fashions for the following era of therapies. Most cancers Cell 39, 610–631 (2021).

  • Ackermann, J. et al. Metastasizing melanoma formation attributable to expression of activated N-RasQ61K on an INK4a-deficient background. Most cancers Res. 65, 4005–4011 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Serrano, M. et al. Position of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Jerby-Arnon, L. et al. A most cancers cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rambow, F. et al. New purposeful signatures for understanding melanoma biology from tumor cell lineage-specific evaluation. Cell Rep. 13, 840–853 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sade-Feldman, M. et al. Defining T cell states related to response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fan, J. et al. Linking transcriptional and genetic tumor heterogeneity by allele evaluation of single-cell RNA-seq information. Genome Analysis 28, 1217–1227 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Goding, C. R. & Arnheiter, H. MITF—the primary 25 years. Genes Dev. 33, 983–1007 (2019).

  • Hoek, Ok. S. & Goding, C. R. Most cancers stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res. 23, 746–759 (2010).

  • Aibar, S. et al. SCENIC: single-cell regulatory community inference and clustering. Nat. Strategies 14, 1083–1086 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Soldatov, R. et al. Spatiotemporal construction of cell destiny choices in murine neural crest. Science 364, eaas9536 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kerosuo, L. & Bronner, M. E. cMyc regulates the scale of the premigratory neural crest stem cell pool. Cell Rep. 17, 2648–2659 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tsoi, J. et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Most cancers Cell 33, 890–904 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Köhler, C. et al. Mouse cutaneous melanoma induced by mutant BRaf arises from enlargement and dedifferentiation of mature pigmented melanocytes. Cell Stem Cell 21, 679–693 (2017).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Pozniak, J. et al. A TCF4/BRD4-dependent regulatory community confers cross-resistance to focused and immune checkpoint remedy in melanoma. Preprint at bioRxiv https://doi.org/10.1101/2022.08.11.502598 (2022).

  • Snippert, H. J. et al. Intestinal crypt homeostasis outcomes from impartial competitors between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Reeves, M. Q., Kandyba, E., Harris, S., Del Rosario, R. & Balmain, A. Multicolour lineage tracing reveals clonal dynamics of squamous carcinoma evolution from initiation to metastasis. Nat. Cell Biol. 20, 699–709 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stuart, T. et al. Complete integration of single-cell information. Cell 177, 1888–1902 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis utilizing DNA nanoball-patterned arrays. Cell 185, 1777–1792 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Calabrese, C. et al. A perivascular area of interest for mind tumor stem cells. Most cancers Cell 11, 69–82 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to focus on genes. Nat. Strategies 17, 159–162 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jin, S. et al. Inference and evaluation of cell-cell communication utilizing CellChat. Nat. Commun. 12, 1088 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based method for decoding genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wei, Ok. et al. Notch signalling drives synovial fibroblast identification and arthritis pathology. Nature 582, 259–264 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Takano, S. et al. Prrx1 isoform switching regulates pancreatic most cancers invasion and metastatic colonization. Genes Dev. 30, 233–247 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ocaña, O. H. et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Most cancers Cell 22, 709–724 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Hoek, Ok. S. et al. In vivo switching of human melanoma cells between proliferative and invasive states. Most cancers Res. 68, 650–656 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Verfaillie, A. et al. Decoding the regulatory panorama of melanoma reveals TEADS as regulators of the invasive cell state. Nat. Commun. https://doi.org/10.1038/ncomms7683 (2015).

  • Widmer, D. S. et al. Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell Melanoma Res. 25, 343–353 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kawanami, A., Matsushita, T., Chan, Y. Y. & Murakami, S. Mice expressing GFP and CreER in osteochondro progenitor cells within the periosteum. Biochem. Biophys. Res. Commun. 386, 477–482 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Boiko, A. D. et al. Human melanoma-initiating cells categorical neural crest nerve development issue receptor CD271. Nature 466, 133–137 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roesch, A. et al. A briefly distinct subpopulation of slow-cycling melanoma cells is required for steady tumor development. Cell 141, 583–594 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schatton, T. et al. Identification of cells initiating human melanomas. Nature 451, 345–349 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Quintana, E. et al. Environment friendly tumour formation by single human melanoma cells. Nature 456, 593–598 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Stemmler, M. P., Eccles, R. L., Brabletz, S. & Brabletz, T. Non-redundant features of EMT transcription elements. Nat. Cell Biol. 21, 102–112 (2019).

  • Bosenberg, M. et al. Characterization of melanocyte-specific inducible Cre recombinase transgenic mice. Genesis 44, 262–267 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krimpenfort, P., Quon, Ok. C., Mooi, W. J., Loonstra, A. & Berns, A. Lack of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413, 83–86 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dankort, D. et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet. 41, 544–552 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Maria Bosisio, F. et al. Practical heterogeneity of lymphocytic patterns in main melanoma dissected by single-cell multiplexing. eLife https://doi.org/10.7554/eLife.53008 (2020).

  • Susaki, E. A. et al. Complete-brain imaging with single-cell decision utilizing chemical cocktails and computational evaluation. Cell 157, 726–739 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yates, A. D. et al. Ensembl 2020. Nucleic Acids Res. 48, D682–D688 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marçais, G. & Kingsford, C. A quick, lock-free method for environment friendly parallel counting of occurrences of ok-mers. Bioinformatics 27, 764–770 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Gans, J. D. & Wolinsky, M. Improved assay-dependent looking out of nucleic acid sequence databases. Nucleic Acids Res. 36, e74 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Rodriguez, J. M. et al. APPRIS 2017: principal isoforms for a number of gene units. Nucleic Acids Res. 46, D213–D217 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bankhead, P. et al. QuPath: open supply software program for digital pathology picture evaluation. Sci. Rep. 7, 16878 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with star-convex polygons. In Proc. Medical Picture Computing and Pc Assisted Intervention—MICCAI 2018 (eds Frangi, A. et al.) Vol. 11071, 265–273 (Springer, 2018).

  • McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing information utilizing synthetic nearest neighbors. Cell Syst. 8, 329–337 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Korsunsky, I. et al. Quick, delicate and correct integration of single-cell information with Concord. Nat. Strategies 16, 1289–1296 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rousseeuw, P. J. Silhouettes: a graphical help to the interpretation and validation of cluster evaluation. J. Comput. Appl. Math. 20, 53–65 (1987).

    MATH 
    Article 

    Google Scholar
     

  • Oren, Y. et al. Biking most cancers persister cells come up from lineages with distinct packages. Nature 596, 576–582 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Guzmán, C., Bagga, M., Kaur, A., Westermarck, J. & Abankwa, D. ColonyArea: an ImageJ plugin to mechanically quantify colony formation in clonogenic assays. PLoS ONE 9, e92444 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    Latest Articles