12.1 C
New York
Thursday, September 29, 2022

CLN3 is required for the clearance of glycerophosphodiesters from lysosomes


  • Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Medoh, U. N., Chen, J. Y. & Abu-Remaileh, M. Classes from metabolic perturbations in lysosomal storage problems for neurodegeneration. Curr. Opin. Syst. Biol. 29, 100408 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Platt, F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. J. Lysosomal storage ailments. Nat. Rev. Dis. Primers 4, 27 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Ferguson, S. M. Neuronal lysosomes. Neurosci. Lett. 697, 1–9 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Perera, R. M. & Zoncu, R. The lysosome as a regulatory hub. Annu. Rev. Cell Dev. Biol. 32, 223–253 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Savini, M., Zhao, Q. & Wang, M. C. Lysosomes: signaling hubs for metabolic sensing and longevity. Tendencies Cell Biol. 29, 876–887 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ballabio, A. & Gieselmann, V. Lysosomal problems: from storage to mobile harm. Biochim. Biophys. Acta 1793, 684–696 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Boustany, R. M. Lysosomal storage ailments—the horizon expands. Nat. Rev. Neurol. 9, 583–598 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Marques, A. R. A. & Saftig, P. Lysosomal storage problems—challenges, ideas and avenues for remedy: past uncommon ailments. J. Cell Sci. 132, jcs221739 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Wallings, R. L., Humble, S. W., Ward, M. E. & Wade-Martins, R. Lysosomal dysfunction on the centre of Parkinson’s illness and frontotemporal dementia/amyotrophic lateral sclerosis. Tendencies Neurosci. 42, 899–912 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, C., Telpoukhovskaia, M. A., Bahr, B. A., Chen, X. & Gan, L. Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative ailments. Curr. Opin. Neurobiol. 48, 52–58 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Abu-Remaileh, M. et al. Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes. Science 358, 807–813 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thai, T. H. et al. Regulation of the germinal middle response by microRNA-155. Science 316, 604–608 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pisoni, R. L., Acker, T. L., Lisowski, Ok. M., Lemons, R. M. & Thoene, J. G. A cysteine-specific lysosomal transport system gives a significant route for the supply of thiol to human fibroblast lysosomes: attainable position in supporting lysosomal proteolysis. J. Cell Biol. 110, 327–335 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Eiberg, H., Gardiner, R. M. & Mohr, J. Batten illness (Spielmeyer-Sjogren illness) and haptoglobins (HP): indication of linkage and task to chr. 16. Clin. Genet. 36, 217–218 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lerner, T.J. et al. Isolation of a novel gene underlying Batten illness, CLN3. Cell 82, 949–957 (1995).

    Article 

    Google Scholar
     

  • Mirza, M. et al. The CLN3 gene and protein: what we all know. Mol. Genet. Genomic Med. 7, e859 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Butz, E. S., Chandrachud, U., Mole, S. E. & Cotman, S. L. Transferring in the direction of a brand new period of genomics within the neuronal ceroid lipofuscinoses. Biochim. Biophys. Acta Mol. Foundation Dis. 1866, 165571 (2019).

  • Jarvela, I. et al. Biosynthesis and intracellular focusing on of the CLN3 protein faulty in Batten illness. Hum. Mol. Genet. 7, 85–90 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Storch, S., Pohl, S. & Braulke, T. A dileucine motif and a cluster of acidic amino acids within the second cytoplasmic area of the batten disease-related CLN3 protein are required for environment friendly lysosomal focusing on. J. Biol. Chem. 279, 53625–53634 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mao, Q., Foster, B. J., Xia, H. & Davidson, B. L. Membrane topology of CLN3, the protein underlying Batten illness. FEBS Lett. 541, 40–46 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ezaki, J. et al. Characterization of Cln3p, the gene product answerable for juvenile neuronal ceroid lipofuscinosis, as a lysosomal integral membrane glycoprotein. J. Neurochem. 87, 1296–1308 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Oetjen, S., Kuhl, D. & Hermey, G. Revisiting the neuronal localization and trafficking of CLN3 in juvenile neuronal ceroid lipofuscinosis. J. Neurochem. 139, 456–470 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Perland, E., Bagchi, S., Klaesson, A. & Fredriksson, R. Traits of 29 novel atypical solute carriers of main facilitator superfamily sort: evolutionary conservation, predicted construction and neuronal co-expression. Open Biol. 7, 170142 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Mitchison, H. M. et al. Focused disruption of the Cln3 gene gives a mouse mannequin for Batten illness. The Batten Mouse Mannequin Consortium [corrected]. Neurobiol. Dis. 6, 321–334 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kovacs, A. D. & Pearce, D. A. Discovering probably the most acceptable mouse mannequin of juvenile CLN3 (Batten) illness for therapeutic research: the significance of genetic background and gender. Dis. Mannequin. Mech. 8, 351–361 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lojewski, X. et al. Human iPSC fashions of neuronal ceroid lipofuscinosis seize distinct results of TPP1 and CLN3 mutations on the endocytic pathway. Hum. Mol. Genet. 23, 2005–2022 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Platt, F. M. Sphingolipid lysosomal storage problems. Nature 510, 68–75 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fuller, M. & Futerman, A. H. The mind lipidome in neurodegenerative lysosomal storage problems. Biochem. Biophys. Res. Commun. 504, 623–628 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hobert, J. A. & Dawson, G. A novel position of the Batten illness gene CLN3: affiliation with BMP synthesis. Biochem. Biophys. Res. Commun. 358, 111–116 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Padilla-Lopez, S., Langager, D., Chan, C. H. & Pearce, D. A. BTN1, the Saccharomyces cerevisiae homolog to the human Batten illness gene, is concerned in phospholipid distribution. Dis. Mannequin. Mech. 5, 191–199 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kopp, F. et al. The glycerophospho metabolome and its affect on amino acid homeostasis revealed by mind metabolomics of GDE1(−/−) mice. Chem. Biol. 17, 831–840 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Allen, F., Pon, A., Wilson, M., Greiner, R. & Wishart, D. CFM-ID: an internet server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res. 42, W94–W99 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sumner, L. W. et al. Proposed minimal reporting requirements for chemical evaluation Chemical Evaluation Working Group (CAWG) Metabolomics Requirements Initiative (MSI). Metabolomics 3, 211–221 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dang Do, A. N. et al. Neurofilament mild chain ranges correlate with scientific measures in CLN3 illness. Genet. Med. 23, 751–757 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fowler, S. & De Duve, C. Digestive exercise of lysosomes. 3. The digestion of lipids by extracts of rat liver lysosomes. J. Biol. Chem. 244, 471–481 (1969).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schmidtke, C. et al. Lysosomal proteome evaluation reveals that CLN3-defective cells have a number of enzyme deficiencies related to adjustments in intracellular trafficking. J. Biol. Chem. 294, 9592–9604 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Corda, D. et al. The rising physiological roles of the glycerophosphodiesterase household. FEBS J. 281, 998–1016 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Patton-Vogt, J. Transport and metabolism of glycerophosphodiesters produced by way of phospholipid deacylation. Biochim. Biophys. Acta 1771, 337–342 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rigoni, M. et al. Equal results of snake PLA2 neurotoxins and lysophospholipid-fatty acid mixtures. Science 310, 1678–1680 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fallbrook, A., Turenne, S. D., Mamalias, N., Kish, S. J. & Ross, B. M. Phosphatidylcholine and phosphatidylethanolamine metabolites could regulate mind phospholipid catabolism through inhibition of lysophospholipase exercise. Mind Res. 834, 207–210 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Storey, J. D. A direct method to false discovery charges. J. R. Stat. Soc. B 64, 479–498 (2002).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • Wyant, G. A. et al. NUFIP1 is a ribosome receptor for starvation-induced ribophagy. Science 360, 751–758 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Perez-Riverol, Y. et al. The PRIDE database and associated instruments and sources in 2019: bettering help for quantification information. Nucleic Acids Res. 47, D442–D450 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Salek, R. M., Steinbeck, C., Viant, M. R., Goodacre, R. & Dunn, W. B. The position of reporting requirements for metabolite annotation and identification in metabolomic research. Gigascience 2, 13 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Chook, S. S., Marur, V. R., Sniatynski, M. J., Greenberg, H. Ok. & Kristal, B. S. Serum lipidomics profiling utilizing LC-MS and high-energy collisional dissociation fragmentation: deal with triglyceride detection and characterization. Anal. Chem. 83, 6648–6657 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Taguchi, R. & Ishikawa, M. Exact and international identification of phospholipid molecular species by an Orbitrap mass spectrometer and automatic search engine Lipid Search. J. Chromatogr. A 1217, 4229–4239 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yamada, T. et al. Improvement of a lipid profiling system utilizing reverse-phase liquid chromatography coupled to high-resolution mass spectrometry with fast polarity switching and an automatic lipid identification software program. J. Chromatogr. A 1292, 211–218 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hankin, J. A., Murphy, R. C., Barkley, R. M. & Gijon, M. A. Ion mobility and tandem mass spectrometry of phosphatidylglycerol and bis(monoacylglycerol)phosphate (BMP). Int. J. Mass Spectrom. 378, 255–263 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells utilizing the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Krink-Koutsoubelis, N. et al. Engineered manufacturing of short-chain acyl-coenzyme A esters in Saccharomyces cerevisiae. ACS Synth. Biol. 7, 1105–1115 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zheng, B., Berrie, C. P., Corda, D. & Farquhar, M. G. GDE1/MIR16 is a glycerophosphoinositol phosphodiesterase regulated by stimulation of G protein-coupled receptors. Proc. Natl Acad. Sci. USA 100, 1745–1750 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Related Articles

    Latest Articles